Interpretation of Water Quality Parameters for Villages of Sanganer Tehsil, by Using Multivariate Statistical Analysis
نویسندگان
چکیده
In this study, the factor analysis techniques is applied to water quality data sets obtained from the Sanganer Tehsil, Jaipur District, Rajasthan (India). The data obtained were standardized and subjected to principal components analysis (PCA) extraction to simplifying its interpretation and to define the parameters responsible for the main variability in water quality for Sanganer Tehsil in Jaipur District. The PCA analysis resulted in two factors explaining more than 94.5% of the total variation in water quality data set. The first factor indicates the variation in water quality is due to anthropogenic sources and second factor shows variation in water quality due to organic sources that are taking place in the system. Finally the results of PCA reflect a good look on the water quality monitoring and interpretation of the surface water.
منابع مشابه
Evaluation of seasonal variability in surface water quality of Shallow Valley Lake, Kashmir, India, using multivariate statistical techniques
Seasonal variation in water quality of Anchar Lake was evaluated using multivariate statistical techniques- principal component analysis (PCA) and cluster analysis (CA). Water quality data collected during 4 seasons was analyzed for 13 parameters. ANOVA showed significant variation in pH (F3 = 10.86, P < 0.05), temperature (F3 = 65, P
متن کاملEvaluation of seasonal variability in surface water quality of Shallow Valley Lake, Kashmir, India, using multivariate statistical techniques
Seasonal variation in water quality of Anchar Lake was evaluated using multivariate statistical techniques- principal component analysis (PCA) and cluster analysis (CA). Water quality data collected during 4 seasons was analyzed for 13 parameters. ANOVA showed significant variation in pH (F3 = 10.86, P < 0.05), temperature (F3 = 65, P
متن کاملAnalysis of physiochemical and microbial quality of waters of the Karkheh River in southwestern Iran using multivariate statistical methods
Rapid population growth as well as agricultural and industrial development have increased the contamination of Iranian rivers. This study utilized principal components analysis (PCA) to determine the degree of significance of qualitative parameters of water resources in the Karkheh River in southwestern Iran. Cluster analysis (CA) grouped the monitoring stations based on the water quality data ...
متن کاملMonitoring and assessment of a eutrophicated coastal lake using multivariate approaches
Multivariate statistical techniques such as cluster analysis, multidimensional scaling and principal component analysis were applied to evaluate the temporal and spatial variations in water quality data set generated for two years (2008-2010) from six monitoring stations of Veli-Akkulam Lake and compared with a regional reference lake Vellayani of south India. Seasonal variations of 14 differen...
متن کاملInvestigation of Ground Waters Quality Using Multivariate Statistical Techniques (Case Study: Maragheh-Bonab Plain, East Azerbaijan Province)
Investigation and analysis of groundwater quality to monitor contamination and identify the most important pollutants and pollution points is one of the research fields. The objective of this research was to plan to improve groundwater quality on various spatial and temporal scales. Groundwater information of Maragheh-Bonab plain was collected from 26 wells in 10 years (2001-2011) with 454 samp...
متن کامل